Occupational Exposures to Ramon Solanas, Pipe yard worker

November 2013

Report Prepared by

Stanley Waligora, CHP
Environmental Dimensions, Inc.
1901 Candelaria Road NW
Albuquerque, NM 87107

Marvin Resnikoff, Ph.D. RWMA 18 The Square, Suite 26 Bellows Falls, VT 05101

Ramon Solanas

1. Introduction

Ramon Solanas worked as a pipe leak inspector for 51 Oil between 1976 and 1979 and as a roughneck for William Drilling between 1980 and 1983. At 51 Oil. Mr. Solanas worked in a pipe yard for an average of 42 hours a week. He tested pipes for leaks and separated damaged material from undamaged material. At William Drilling, Mr. Solanas worked on a land based drill rig for 12 hours a day, four-days-on, four-days-off, and performed a variety of duties. At 51 Oil and William Drilling, Mr. Solanas was occupationally exposed, without his knowledge to naturally occurring radioactive material (NORM). Pipeyards, such as 51 Oil, were involved in descaling of radioactively contaminated field pipe. Workers and visitors at pipeyards were exposed to radiation through inhalation of the scale dust, incidental ingestion of radioactive dust and to external gamma radiation from the scale in the pipe and from the scale deposited on the ground. Oil rigs, such as William Drilling, used NORM contaminated pipes in their drillings. Workers and visitors at land based drill rigs were exposed to radiation through incidental ingestion of radioactive sludge and to external gamma radiation from the sludge deposited on the rig floor.

At the pipe yard and oil rig, there was no radiation protection program. Therefore no measurements were made at the time work was performed so the true radiation does will never be known. In this report, based on the technical literature and air measurements from other pipeyards, a range of likely radiation doses is estimated. It is very likely that workers and non-workers received doses well in excess of applicable limits to nuclear industry workers. This conclusion is evident even when modest values for exposure factors are used (scale, activity, breathing rates, dust loadings and so on). Mr. Solanas was diagnosed with Hodgkin's Lymphoma in 1995 and again in 2000. The radiation dose received by Mr. Solanas, more likely than not, caused his cancer.

After calculating Mr. Solanas' radiation dose specifically to the thyroid, we employed NIOSH's Interactive RadioEpodemiological Program (IREP), version 5.7¹ to calculate the likelihood that the plaintiff's cancer was caused by radiation, rather than by something else. This program was developed by NIOSH to apply the National Cancer Institute's (NCI) risk models directly to data about exposure for a specific employee. IREP is based upon radioepidemiological tables developed by the National Institutes of Health (NIH) in 1985 and more recently updated with Japanese atomic bomb survivor data. These tables act as a reference tool to provide the probability of causation estimates for individuals with cancer that were exposed to ionizing radiation. The purpose of this program is to calculate the probability of

¹ NIOSH and SENES Oak Ridge Inc., 2009

causation that occupational radiation exposure received while working at a DOE facility or elsewhere within the nuclear weapons industry caused a specific type of cancer².

IREP is primarily based upon risk coefficients for cancer incidence gathered from Japanese atomic bomb survivor studies. The risk coefficients have been adjusted to account for random and systemic errors in the atomic bomb survivor dosimetry as well as for the low dose and low dose-rate situations that are more common to American workers exposed while on the job. The probability of causation, or assigned share, for this risk is calculated as "the cancer risk attributable to radiation exposure divided by the sum of the baseline cancer rise (the risk to the general public) plus the cancer risk attributable to the radiation exposure". That is the fraction of cancers observed in a large heterogeneous group with similar exposure histories that would not have occurred in the absence of exposure. The assigned share is estimated with uncertainty in IREP and is expressed as a probability distribution of results. The statistical uncertainty of the risk model is accounted for with a Monte Carlo simulation where repeated samples (typically 2,000) are taken from probability distribution functions and the probability of causation is calculated for each set of samples. The upper 99-percent confidence level from the resulting probability distribution is compared to the probability causation of 50-percent to determine eligibility compensation of Manhattan Project workers. If cancer is determined to be "at least as likely as not" caused by radiation doses received while working i.e., with a probability of 50percent or greater at the 99-percent confidence level, then the worker is deemed eligible for compensation. The upper 99-percent confidence level is used to minimize the possibility of denying compensation to employees with cancer likely caused by occupational radiation exposure. As more information becomes available, we reserve the right to supplement this report.

To prepare for this report we reviewed, exhibits, previous work in similar cases, social security and medical records as well as several articles and reference documents. Interviews with Mr. Solanas were also conducted. We employed standard methodology used by health physicists to calculate Mr. Solanas' radiation dose. To calculate direct gamma dose rates in the pipeyard and oil rig, we used the standard software, MicroShield Version 8.023 by Grove Software, Incorporated. MicroShield is a program used to estimate dose rates due to a specific external radiation source

2. Pipeyards

Pipeyards, such as 51 Oil, cleaned and inspected pipe used in the oil field industry. Thousands of oil field tubings and casings were brought in by barge and truck from the Gulf Coast region; their origins would be identified on trucking tickets or work audits. Each truck carried between 150 to 200 joints, and would transport the used oilfield pipe to the pipeyards at various locations. Pipe was also trucked in directly from production sites in Louisiana and neighboring states.

² Ibid.

³ Grove Software Incorporated, 2008

The pipe was stacked on racks, up to eight layers, which were several feet high⁴. After cleaning, inspection and testing, the pipe was stored and eventually returned to the oil fields again either on barges or directly by truck, depending on the location of the oil production sites.

Precipitated technically enhanced NORM or TENORM-containing salts and scale are in a matrix of other compounds and mixtures. Accumulation of the salts, primarily barium sulfate, inside the pipes depends on the characteristics of these salt matrices. Some scale looks like fine sand whereas others resemble rust. Radium-226 has a half life of 1600 years. The quantity of radioactive material in the deposits is small from a mass standpoint. One gram of radium-226 is one curie of radioactivity, or one billionth of a gram of Ra-226 is equivalent to 1,000 pCi/g. Radioactive material within the pipe scale cannot be distinguished from the salts and other deposits.

Pipes include tubing and casing. Tubing is the inner pipe through which production fluid is pumped, whereas casing surrounds and protects the tubing from outside pressure. Both casing and tubing were in contact with radium-contaminated water or brine which plated out of pipes, scale. At the pipeyards, both tubing and casing were cleaned, but since the process to clean tubing and casing is very similar⁵, we refer to both as simply "pipe". Pipe was cleaned with air rattlers and/or wire brushes, depending on the degree on contamination. A rattler or reamer is a roatating metal device attached to an air gun that spons at high speeds inside of the pipe. During this process, the rattler grinds and pulverized the scale attached to the pipe wall and large amounts of particles and dust are blown out of the pipe with the air that powers the rattler. At the same time, scale is brushed off the outside of the pipe. The outside scale was sucked into a dust collector where the larger particles fell into a catcher. The smaller particles were blown through the stack and out into the air. The dust collector did not catch particles or dust coming out of the inside of the pipe. Depending on the degree of contamination, the cleaning process removed between 0.5 and 2lbs of scale from the inside of one, 30-foot pipe joint⁶.

Pipe cleaning machines were manufactured by Hub City Ironworks of Lafayette, Louisiana. Hun City referred us to Intool, Inc. a company that currently manufactures tube cleaners. A variety of different rattlers are shown in Appendix B.

On a stationary machine about 300 pipe joints could be cleaned per day⁷, whereas the cleaning rate of the mobile units was about half of that. The pipe cleaning machines were usually used to capacity, which means that assuming 8 hours of actual cleaning per day, a pipe joint was cleaned about every 1.6 minutes.

⁴ Testimony of Milton Vercher in Grefer Case, p. 33.

⁵ Trstimony of Milton Vercher in Grefer Case, p. 27

⁶ Testimony of Mike Bulot in Grefer Case, p. 26.

⁷ Testimony of Mike Bulot in Grefer Case, p. 16.

Men who worked as pipe cleaners recall a dense cloud of dust during pipe cleaning⁸. Large particles of scale fell to the ground near the pipe end, whereas smaller particulates stayed airborne for a period of time, before finally settling to the ground. The fine dust was transported wherever the wind blew, as far as the parking lot or even off the property into the neighboring areas⁹. The larger scale fragments accumulated on the ground near the cleaning machine and had to be removed twice per week. This material as well as the scale from the dust collector boxes (emptied 2-3 times per week) was spread over the yard or used as fill material for potholes and pipe racks that had sunk into the soft ground¹⁰. Former workers testified that some areas were covered with about 5 to 7 inches of scale¹¹.

Scale and dust particles came off the inside and outside of pipe also during other processes such as loading/unloading of pipe, lifting bundles of pipe with a crane, stacking pipe onto racks and moving it around the yard. Until a pipe was cleaned every heavy impact would cause the pope to release a certain amount of scale fragments and dust.

Workers stated that they usually came home covered with scale from head to toe¹². The personal vehicles that were parked in the vard had thick dust inside and out. Some workers' wives reported that they would not allow their husbands into the house without first disrobing and/or cleaning up¹³. In one incident, a worker's neighbor complained about her line drying laundry being dirty¹⁴ from the dust that the worker brought home on his vehicle and his clothes¹⁵. Workers recall coughing up visible dust and sneezing or blowing dust from their noses several hours after work.

Respirable Particulates

The Occupational Health and Safety Administration's (OSHA) regulation standards in 29 CFR for "Particulates not otherwise regulated" (PNOR) in Table Z-1, and for "Inert and nuisance dust" in Table Z-3, are 5 mg/m³ for respirable dust. As seen in this report, we estimated the air particulate concentrations near the pipe-cleaning machine to be 10–30 mg/m³, or 2-6 times above this limit, based upon empirical data 16,17, discussed later in the report.

⁸ Telephone conversation with Mike Bulot; corroborated by Milton Vercher, Ricky Benoit and James Armand (all telephone conversations)

⁹ Testimony of Mike Bulot in Grefer Case, p. 19.

¹⁰ Testimony of Mike Bulot in Grefer Case, p. 41.

¹¹ Vercher Deposition, Civil District Court, Parish of Orleans, State of Louisiana, No. 95-15159 (26 January 1996).

¹²Testimony of Mike Bulot in Grefer Case, p. 19.

¹³ Interview with Robert V. Torry and David C. Torry Jr. by Stan Waligora on October 16, 2001.

¹⁴ Interview with Floyd Thomassie Sr. by Stan Waligora on October 16, 2001.

¹⁵ Interview with Charles Narcisse Jr. by Stan Waligora, October 2001.

¹⁶ ITCOEX 925

¹⁷ Radiation Technical Services of Baton Rouge, Air Sample Collected in Location Approximating Breathing Zone of Most Exposed Person, X-ref. # 930415.01-2 (April, 1993).

On his April 1987 visit, Lindsay Booher, Exxon's Industrial Hygienist, noted that levels of "nuisance dust" were exceeded at the ITCO yard. This means that the workers' health were endangered in two separate ways by the very high dust concentrations they were exposed to at work: the sheer amount of it, and the radionuclides within this dust. A report by Lindsay Booher ¹⁸ discusses the dust situation. Booher writes: "...a considerable amount of airborne dust is generated during pipe cleaning. The results suggest that the exposure to the machine operators exceeded the American Conference of Governmental Industrial Hygienists Threshold Limit Value (TLV) for nuisance dusts." In other words, Exxon's expert deemed an exposure to this amount of dust unsafe, even without factoring in the presence of radioactivity.

The correlation between exposure to respirable particulates and increased morbidity and mortality is well documented. In the following, we present the findings of some key studies.

Health effects for which statistically significant associations with exposure to PM10 were found include overall mortality, mortality due to cardiopulmonary and cardiovascular diseases and lung cancer, and morbidity due to chronic obstructive pulmonary disease (COPD), bronchitis, asthma, dyspnea, breathlessness, cough, production of phlegm and pneumonia.

Epidemiological work conducted over several decades has suggested that long-term residence in cities with elevated ambient levels of air pollution from combustion sources is associated with increased mortality. Subsequently, two prospective cohort studies, the Six Cities Study¹⁹ and the American Cancer Society (ACS) Study²⁰ estimated that annual average all-cause mortality, increased in association with an increase in PM2.5 (all particles less than 2.5 µm in median aerodynamic diameter). The findings of these studies were recently confirmed in a large-scale reanalysis²¹.

As part of the Six Cities Study, Dockery and colleagues had prospectively followed a cohort of 8,111 adult subjects in Northeastern and Midwestern United States for 14 to 16 years beginning in the mid-1970s. The authors found that higher ambient levels of fine particles (PM2.5) were associated with a 26% increase in mortality from all causes, when comparing the most polluted to the least polluted city, which had a difference in PM2.5 of 18.6 $\mu g/m3$ and PM10 concentration of 28.3 $\mu g/m^3$. This approximately translates to a 9% increase in mortality for an increase in PM2.5 of 10 µg/m³. The same increase in fine particles was associated with a 13% increase in mortality from cardiopulmonary disease.

In the much larger ACS Study, Pope and colleagues followed 552,138 adult subjects in 154 US cities beginning in 1982 and ending in 1989. It was again found that higher ambient levels of fine particles were associated with increased mortality from all causes and from cardiopulmonary

¹⁸ Booher L.E., et al, Report of Industrial Hygiene Evaluation of the Controlled Environmental Cleaning Facility, Intracoastal Pipe Repair and Supply Company, Inc, ITCO-A 23192 (February, 1988).

¹⁹ Dockery DW, et al, An Association Between Air Pollution and Mortality in Six U.S. Cities, New England Journal of Medicine, 329:1753-9 (1993).

²⁰ Pope CA, et al, Particulate Air Pollution as a Predictor of Mortality in a Prospective Study of U.S.

Adults, Journal of the American Medical Association, 151:669-74 (1995).

21 Krewski D, et al, Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of

Particulate Air Pollution and Mortality, Health Effects Institute (HEI) (July, 2000).

disease in the 50 cities for which fine particle data were available (sampled from 1979 to 1983). In a recent follow-up of the same cohort study²²,, the authors calculated an increased risk for allcause, cardiopulmonary and lung cancer mortality of 4%, 6% and 8%, respectively, for each increase in fine particulate air pollution of 10 µg/m3 after adjusting for a range of other risk factors, including smoking.

An extensive study about mortality and morbidity in the United States researched the association between PM10 and hospital admissions due to specific illnesses in 14 U.S. Cities²³. The authors calculated an average increase in hospital admissions of 1%, 2% and 2% for cardiovascular diseases (CVD), pneumonia and chronic obstructive pulmonary disease (COPD), respectively. Another study did not measure COPD as a diagnosed disease, but did find impaired lung function among workers who are exposed to high levels of dust. Prevalence rates of airway obstruction, (defined as the percent of the ratio of the forced expiratory volume/s (FEV1) and the forced vital capacity (FVC) below the expected ratio based on age), were higher among workers exposed to both mineral and organic dust²⁴.

Another short-term study shows a significant correlation between PM10 and the onset of myocardial infarction (heart attack)²⁵. An increase in 24-h-PM10 was associated with an increased onset of myocardial infarction of 22%

A cross-sectional study of schoolchildren living in ten different communities in Switzerland found statistically significant correlations between long-term exposure to PM10 and symptom rates of chronic cough, nocturnal dry cough and bronchitis²⁶. The correlation was strongest for children who had asthmatic or cough symptoms. A similar study involving adults²⁷ calculated statistically significant correlations between an increase of the annual mean concentration of PM10 of 10 µg/m³, and the prevalence of chronic cough or phlegm production (ERR 0.27, 95%) CI: 0.11-0.65), breathlessness (ERR 32.8, 95% CI: 0.14-0.55) and dyspnea on exertion (ERR 0.32, 95% CI: 0.18-0.46). These correlations were controlled for smoking.

In a study to assess the impact of particulate air pollution on health effects and resulting health costs in Switzerland, the authors calculated the causal correlation between PM10 and a series of health outcome variables, using available epidemiological data²⁸. An increase in ambient PM10 concentration of 10 µg/m³ was associated with a statistically significant increase of 4.4% in total

²³ Samet JM, et al, The National Morbidity, Mortality, and Air Pollution Study. Part II: Morbidity and Mortality from Air Pollution in the United States, Health Effects Institute (HEI), Research Report 94 (II)

²² Pope CA, et al.

Kennedy SM and PA Demers, Occupational Airways Disease from Chronic Low Level Exposure to Mineral Dusts, Organic Dusts, and Mixed Exposures: Occupational Chronic Obstructive Pulmonary Disease, Seminars Respiratory Critical Care Medicine, 20(6):541-9 (1999).

Peters A, Dockery DW, Muller JE, et al, Increased Particulate Air Pollution and the Triggering of Myocardial Infarction, Circulation, 103:2810-15 (2001).

Braun-Fahrlaender C, et al, Respiratory Health and Long-term Exposure to Air Pollutants in Swiss

Schoolchildren, American Journal of Respiratory Care Medicine, 155:1042-49(1997).

²⁷ Zemp E, Elsässer S, Schindler C, et al, Long-Term Ambient Air Pollution and Respiratory Symptoms in Adults (SAPALDIA Study), American Journal of Respiratory Care Medicine, 159:1257-66 (1999).

28 Kuenzli N, et al, Air Pollution in Switzerland-Quantification of Health Effects Using Epidemiologic Data,

Schweizerische Medizinische Wochenschrift (Swiss Medical Weekly), 127(34):1361-70 (23 August 1997).

mortality; 25% in total bronchitis prevalence in adults; 12.8% cough/phlegm in adults; 1.47% in hospital admissions for respiratory diseases; 0.9% in admissions for cardiovascular diseases; and 5.3% in days with asthma attacks among asthmatics. According to the authors, conservative assumptions were used throughout this study, and therefore the true effects were likely to be even larger.

A study undertaken among residents in and around Anchorage examined the correlation between PM10 concentrations and the number of daily outpatient visits for respiratory disease including asthma, bronchitis and upper respiratory illness²⁹. The latter category included sinusitis and rhinitis, two diseases that exist among the former ITCO workers. An increase of 10 μ g/m³ was associated with an increase in hospital visits due to upper respiratory illness of 1.2%.

All these epidemiological studies directly apply to the work situation at the pipeyards regarding the general connection between inhalation of particulates and adverse health effects. The major difference is that in epidemiological studies, the subjects are usually exposed to much lower particulate concentrations than pipeyard workers. Under "normal" circumstances, it is very rare that someone is exposed to particulate concentrations of more than 0.1 mg/m3. In contrast, we apply a scale dust concentration of 10-30 mg/m³ near the pipe cleaning machines, and of 1.6-3.6 mg/m³ in other parts of the pipe yards. That is, we reduce the dust concentration by a f actor of 10 away from the pipecleaning machines, and factor in 0.6 mg/m³ due to resuspension of scale that had deposited on the ground of the pipeyard.

3. Radiation Pathways

Dose Rate from Inhalation of Radioactive Particulates

In order to calculate the radiation dose rate due to inhalation of radioactive particulates we first calculate the amount of radioactivity that a person inhaled in a particular time period, and apply standard dose conversion factors (DCF), as recommended by the International Commission on Radiological Protection (ICRP)³⁰. These DCF convert an amount of a specific inhaled radionuclide into the resulting inhalation dose to specific organs.

Different DCF exist for different exposure assumptions. For our calculations, we assume that the respirable scale dust is relatively insoluble, and that the particles have a diameter of 1 μ m AMAD. Dose conversion factors for inhalation are presented in App. A.

We assume secular equilibrium between Ra-226 and Ra-228 and their respective progeny, i.e. we apply the same activity in scale (in pCi/g) for the daughter nuclides as for their parents.

Gordian ME, Ozkaynak H, Xue Jianping, et al, Particulate Air Pollution and Respiratory Disease in Anchorage, Alaska, Environmental Health Perspectives, 104:290-7 (1996).

Anchorage, Alaska, Environmental Health Perspectives, 104:290-7 (1996).

30 International Commission on Radiological Protection (ICRP), Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 5 Compilation of Ingestion and Inhalation Dose Coefficients, ICRP 72 (1996). Table A.2.

The total amount of inhaled radioactive material is equal to the dust loading in the working environment, multiplied by the radioactive concentration of the dust, and by the ventilation (breathing) rate. The inhalation dose rate can therefore be calculated as follows:

$$DR_{inh} = C * A * V * DCF_{inh}$$

where

DR_{inh} Inhalation dose rate (mrem/time)

Air particulate concentration (mg/m³)

Activity of Ra-226 and Ra-228 in scale (pCi/g) Α

Ventilation rate (breathing rate, m³/time)

DCF_{inh} Dose conversion factor for inhalation for Ra-226 and Ra-228 chains (mrem/pCi)

Because the ITCO yard is no longer in operation and the workers were exposed years before discovering the dangers associated with cleaning of oil pipe, actual measurements of the average air particulate concentration in the pipe yard are not available. The workers were exposed to different concentrations of particulates, depending on their exposure type(s). However, isolated measurements of particulate air concentration showed 11 mg/m³ in the ITCO yard³¹, and 53 mg/m³ at another pipe vard³². Both measurements were taken while pipe was being cleaned, but presumably at different distances from the cleaning machine (the exact locations of the measurements were not given).

Because of these uncertainties, we apply an air particulate concentration range, as opposed to a single value. We expect this range to include the "true" average air particulate concentration to which the pipe cleaners were exposed. In the vicinity of the pipe cleaning process, we apply a respirable dust concentration of $C = 10 \text{ mg/m}^3$ as a lower bound and a concentration of C = 30mg/m³ as an upper bound. This range includes the air particulate measurement carried out at ITCO, but it is below the measurement obtained at another pipe yard of 53 mg/m³.

Based on testimony of former ITCO workers, the visible dust cloud emanating from the pipe cleaning machine reached at least 50 yards downwind³³.

For locations away from the pipe cleaning machine, but still within the pipe vard, we apply a concentration range directly due to pipe cleaning operations that is ten times smaller, i.e. of 1-3mg/m³. To this, we add re-suspension of scale particulates in the yard due to activities that mechanically and non-mechanically disrupted scale. Such activities include movement of trucks and forklifts, road building, rack building, shoveling scale from ground into potholes, workers

³¹ ITCOEX 925

³² Radiation Technical Services of Baton Rouge, Air Sample Collected in Location Approximating Breathing Zone of Most Exposed Person, X-ref. # 930415.01-2 (April, 1993).

Telephone conversations with M. Bulot and R. Benoit.

walking, as well as wind activity. We estimate that particulate concentration due to resuspension is the same as particulate concentration at a construction site³⁴, 0.6 mg/m³. The air particulate concentration in the pipe yard away from the pipe cleaning machine therefore ranges from 1.6 to 3.6 mg/m^3 . A detailed discussion of our calculations and estimates of the concentration range of respirable particulates is presented in App. A.

To calculate the radioactivity (A) in the dust, we use scale measurements taken in the ITCO pipe yard. We apply a scale activity of A = 6.000 pCi/g for Ra-226, and of A = 2.000 pCi/g for Ra-228. This estimate is based on measurements by the EPA³⁵, Chevron³⁶ and Reed³⁸ (for details, see App. A).

The amount of inhaled radioactive material not only depends on the amount of this material in the air, but also on the rate at with which the particles are inhaled. For adult male workers, we use the ventilation rate (or breathing rate) for moderate exercise recommended by ICRP 66³⁹ of $V = 1.5 \text{ m}^3/\text{h}$.

Using information about a worker's job history, we then calculate the total dose he received by multiplying the dose rate with the exposure time:

 $Dose_{inh}$ (mrem) = DR_{inh} (mrem/time)* exposure time

Information regarding the type of exposure and the exposure time in the vicinity of the pipe cleaning machines, and in other parts of the yard, was gathered from personal interviews with former workers of the ITCO pipe yard in Harvey, LA, and/or their families.

We ignore the inhalation dose due to emanation of radon and thoron from the ground. The calculation of the inhalation dose rate is similar to that of the inhalation dose rate for particulates.

Dose Rate from Incidental Soil Ingestion

³⁴ United States Department of Energy, Pathway Analysis and Radiation Dose Estimates for Radioactive Residues at Formerly Utilized MED/AEC Sites, Oak Ridge National Laboratory. DOE ORO-832 (1983).

35 United States Environmental Protection Agency (US-EPA), Letter from Charles R Porter to Eddie S Fuentz (MS)

DOH), with attached report on radiological survey of the Case Property (23 January 1987).

³⁶ NORM Study Team, Final Report: Naturally Occurring Radioactive Materials in Production Operations, Chevron USA, Inc. (1990).

³⁷ PGREF 101884

³⁸ Reed G, Holland B, and A McArthur, Evaluating the Real Risks of Radioactive Scale in Oil and Gas Production, in Proceedings of the First International Conference on Health, Safety and the Environment, held in The Hague, Netherlands, Society of Petroleum Engineers, Richardson, TX (1991).

³⁹ International Commission on Radiological Protection (ICRP), Human Respiratory Tract Model for Radiological Protection, Annals of the ICRP 24 (1-3) (1994). International Commission on Radiological Protection (ICRP), Human Respiratory Tract Model for Radiological Protection, Annals of the ICRP 24 (1-3) (1994).

The incidental soil ingestion dose rate is calculated in a way similar to the inhalation dose rate. We first calculate the ingested amount of radioactive material, followed by the application of a DCF for ingestion to obtain the ingestion dose rate:

$$DR_{ing.} = IR * A * DCF_{ing.}$$

where

DR_{ing} Ingestion dose rate (mrem/time)

IR Ingestion rate (mg/time)

A Activity of Ra-226 and Ra-228 in scale (pCi/g)

DCF_{ing}.Dose conversion factors for ingestion for Ra-226 and Ra-228 chains (mrem/pCi).

For incidental soil ingestion, we apply a scale ingestion rate of IR = 240 mg/d as a lower bound and IR = 480 mg/d as the upper bound. The upper bound is the incidental soil ingestion rate for outdoor yard work as given by EPA 40 . This estimate is based on the assumption that a 50 μ m thick layer of soil is ingested from the inside surfaces of the thumb and fingers of one hand. The upper bound assumes that all of the incidentally ingested soil/dust corresponds to pipe scale, whereas for the lower bound, only half of the ingested material is assumed to be pipe scale, and the other 50 % is ordinary dust/dirt.

We apply the scale activity as used above in the calculation of the inhalation dose rate of 6,000 pCi/g of Ra-226, and 2,000 pCi/g of Ra-228. Again, we assume secular equilibrium between the parent and daughter nuclides.

The total ingestion dose is calculated by multiplying the ingestion dose rate by the exposure time:

$$D_{ing}$$
 (mrem) = DR_{ing} (mrem/time) * exposure time

The type of exposure and the exposure time in the yard depend on the personal history of each worker, which was determined from interviews and the type of job held during employment.

The incidental soil ingestion rate for outdoor yard work does not take into account eating in dusty work places and licking dust off lips; it is entirely due to accidentally ingesting material from one's hand while working. Eating food in a dusty environment would lead to much greater ingestion rates.

⁴⁰ United States Environmental Protection Agency (US-EPA), *Exposure Factors Handbook*, I EPA/600/P-95/002Fa:4-21 (August, 1997).

Mr. Solanas also ingested sludge while working on oil rigs. Since we do not have measurements of sludge concentrations present in production pipes of the oil rigs on which Mr. Solanas worked, we use a range of sludge concentrations provided by the International Atomic Energy Agency (IAEA)⁴¹. These concentrations were measured in various locations within the United States and we believe them to be a representative range of the concentrations to which the plaintiffs were most likely exposed. According to the IAEA, we have the following ranges: Ra-226 (pCi/g): Ra-226 (1.35, 21600), Ra-228 (13.5, 1350), Po-210 (0.108, 4320), and Pb-210 (2.7, 31500). For the sludge calculations, we assume secular equilibrium between Ra-226 and Ra-228 and their respective progeny, i.e. we apply the same activity in sludge (pCi/g) for the daughter nuclides as their parent. If the range is several orders of magnitude, we use the geometric mean.

Dose Rate from External Radiation

The workers and visitors were further exposed to external radiation from the scale deposited on the ground and from scale within the pipe as it was stored, cleaned and inspected in the yard. Workers and visitors to the oil rigs were exposed to external radiation from sludge on the rig floor. External radiation coming off the soil is also called groundshine.

External radiation is directly measured as a radiation dose, as opposed to ingestion and inhalation, for which we first calculate the uptake. The external radiation dose rate to the whole body due to soil contamination is based on the radioactivity in the contaminated layer, and the thickness of this layer.

To calculate the groundshine dose rate, we use the same scale radioactivity as above, 6,000 and 2,000 pCi/g of Ra-226 and Ra-228, respectively, and secular equilibrium.

For scale thickness, we use a lower and upper bound of 1 and 5 cm, respectively. If we multiply the activity in scale with these two sets of DCF, we obtain a groundshine dose rate in mrem/h:

$$DR\gamma = A * DCF_{\gamma}$$

where

DR, Groundshine dose rate (mrem/time)

A Activity of Ra-226 and Ra-228 in scale (pCi/g)

DCF, Dose conversion factors for external radiation for Ra-226 and Ra-228 chains (mrem*g/h-pCi)

⁴¹ International Atomic Energy Agency (IAEA), 2003. *Radiation Protection and the Management of Radioactive Waste in the Oil and Gas Industry*, Safety Reports Series No. 34.

The resulting effective dose is calculated by multiplying the dose rate with the exposure time. The dose rate at the pipeyard from scale induced groundshine was calculated using Microshield: 3.576 mr/h (1 cm depth) and 10.192 mr/h (5 cm depth). Mr. Solanas spent 100% of his time in the pipe yard he was working at. The dose rate at the oil rig from sludge on the floor was calculated using Microshield is 0.136 mrm/hr (1cm depth). Mr. Solanas spent 75% of his time on the oil rig he was working at.

4. Radiation Dose Rate to Mr. Solanas

Mr. Solanas worked as a pipe leak inspector for 51 Oil between the years of 1976 and 1979 and as a roughneck for William Drilling between the years of 1980 and 1983. While employed by these companies, he spent 100% of his work day at the pipe yard and 75% of his work day on the oil rig.

Our calculations do not take into account the additional exposure Mr. Solanas received from handling pipes; we have only calculated the exposure Mr. Solanas received for being present in the pipe yard and oil rig during his work day. If we were to calculate the gamma radiation Mr. Solanas received from handling pipes, his total dose and IREP percentage would increase. At the pipe yard, Mr. Solanas was exposed to the inhalation and ingestion of scale in addition to an external groundshine radiation. At the oil rig, Mr. Solanas was exposed to the incidental ingestion of sludge and external radiation from sludge on the oil rig floor.

The dose calculations appear on the spreadsheet, Ramon Solanas, Calcs.xml. Given the radiation doses to thyroid, we used dose conversion factors to calculate the radiation dose to this organ.

The higher radiation doses were multiplied by a factor of ten, following the Cerrie report. According to the Committee Examining Radiation Risks of Internal Emitters (CERRIE)⁴², the risk due to exposure by alpha-emitting radionuclides taken internally may be as much as 10 times higher than calculated. This is because radiation risks are predominantly determined by epidemiological studies, particularly the study of Japanese bomb survivors⁴³. Japanese atomic bomb survivors were exposed primarily to an instant of external gamma radiation and neutron, and many committees have extrapolated the bomb survivor results to radionuclides taken in internally. However, radionuclides that emit beta and alpha short range radiation over long periods of time present several issues that have not been studied in detail. The uncertainties associated with internal emitting radioactive materials, according to CERRIE, might be as much as ten times greater.

⁴³ Preston, DL, et al., 2003

⁴² CERRIE, 2004

In our calculations, the dose commitment period for Hodgkin's Lymphoma is 20 years and less, since Mr. Solanas contracted leukemia 20 years after he began working for 51 Oil.

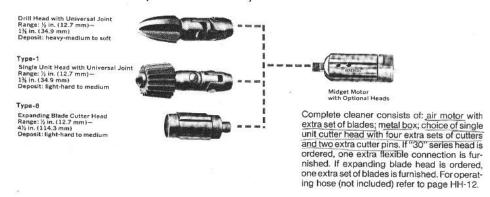
Mr. Solanas' total minimum committed radiation dose to the thyroid was calculated to be 8.89 rems while the total maximum radiation dose is calculated as 121.66 rems. Employing IREP, we determined that the likelihood that his Hodgkin's Lymphoma was caused by his occupational radioactive exposure was 78.19% indicating that more likely than not, his two cancers were caused by radiation.

Tables

Table 1. Inhalation dose conversion factors: Hodgkin's Lymphoma

	Hodgkin's
Radionuclide	Lymphoma ^a
	DCF
	(mr/pCi)
Ra-226	1.07E-02
Pb-214	4.81E-07
Bi-214	4.81E-08
Pb-210	4.07E-04
Bi-210	1.48E-04
Po-210	4.07E-03
Ra-228	159E-02
Ac-228	2.63E-04
Th-228	7.03E-01
Ra-224	1.11E-04
Pb-212	1.22E-05
Bi-212	9.99E-08

a. Adult w/ 20 yr commitment period, particle size 1 µm


Table 2. Ingestion dose conversion factors: Hodgkin's Lymphoma

	Hodgkin's
Radionuclide	Lymphoma ^a
	DCF
	(mr/pCi)
Ra-226	1.37E-04
Pb-214	4.07E-08
Bi-214	7.77E-09
Pb-210	3.07E-04
Bi-210	7.40E-08
Po-210	2.04E-04
Ra-228	5.18E-04
Ac-228	2.37E-08
Th-228	1.15E-05
Ra-224	4.07E-05
Pb-212	7.77E-06
Bi-212	3.48E-08
a Adult w/ 20 vr commitment	

a. Adult w/ 20 yr commitment period, particle size 1 µm

Appendix B. Rattlers used to clean pipes at pipeyards

Complete series of motors and heads available for tube sizes $1\!/2''$ to 1%'' (12.7 to 34.9 mm) I.D.

Complete series of motors and heads available for tube sizes $1\frac{1}{2}$ " to $13\frac{1}{4}$ " (38.1 to 336.5 mm) I.D.

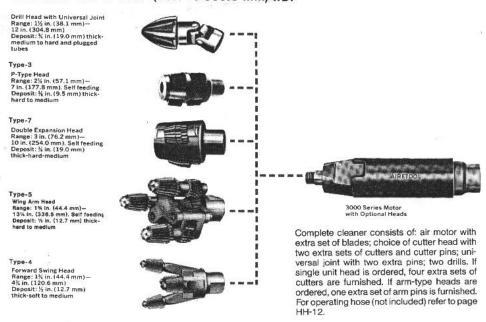


Figure 2. Air rattlers for straight tubes.

References

Booher L.E., et al, Report of Industrial Hygiene Evaluation of the Controlled Environmental Cleaning Facility, Intracoastal Pipe Repair and Supply Company, Inc, ITCO-A 23192 (February, 1988).

Braun-Fahrlaender C, et al, Respiratory Health and Long-term Exposure to Air Pollutants in Swiss Schoolchildren, American Journal of Respiratory Care Medicine, 155:1042-49(1997).

Committee Examining Radiation Risks of Internal Emitters (CERRIE), 2004. Report of the Committee Examining Radiation Risks of Internal Emitters, Crown Copyright, Great Britain (October 2004).

Dockery DW, et al, An Association Between Air Pollution and Mortality in Six U.S. Cities, New England Journal of Medicine, 329:1753-9 (1993).

Gordian ME, Ozkaynak H, Xue Jianping, et al, Particulate Air Pollution and Respiratory Disease in Anchorage, Alaska, Environmental Health Perspectives, 104:290-7 (1996).

Grove Software Incorporated, Microshield 8.01, 2008, Lynchburg, VA. Website URL: www.radiationsoftware.com.

International Atomic Energy Agency (IAEA), 2003. Radiation Protection and the Management of Radioactive Waste in the Oil and Gas Industry, Safety Reports Series No. 34.

International Commission on Radiological Protection (ICRP), Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 5 Compilation of Ingestion and Inhalation Dose Coefficients, ICRP 72 (1996). Table A.2.

International Commission on Radiological Protection (ICRP), *Human Respiratory Tract Model for Radiological Protection, Annals of the ICRP 24 (1-3)* (1994). International Commission on Radiological Protection (ICRP), *Human Respiratory Tract Model for Radiological Protection, Annals of the ICRP 24 (1-3)* (1994).

Kennedy SM and PA Demers, Occupational Airways Disease from Chronic Low Level Exposure to Mineral Dusts, Organic Dusts, and Mixed Exposures: Occupational Chronic Obstructive Pulmonary Disease, Seminars Respiratory Critical Care Medicine, 20(6):541-9 (1999).

Krewski D, et al, Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of Particulate Air Pollution and Mortality, Health Effects Institute (HEI) (July, 2000).

Kuenzli N, et al, Air Pollution in Switzerland-Quantification of Health Effects Using Epidemiologic Data, Schweizerische Medizinische Wochenschrift (Swiss Medical Weekly), 127(34):1361-70 (23 August 1997).

NIOSH and SENES Oak Ridge, Inc. *Interactive RadioEpidemiological Program NIOSH-IREP* v.5.6. Website URL: http://www.niosh-irep.com/irep_niosh (January 5, 2009).

NORM Study Team, Final Report: Naturally Occurring Radioactive Materials in Production Operations, Chevron USA, Inc. (1990).

Peters A, Dockery DW, Muller JE, et al, Increased Particulate Air Pollution and the Triggering of Myocardial Infarction, Circulation, 103:2810-15 (2001).

Pope CA, et al, Particulate Air Pollution as a Predictor of Mortality in a Prospective Study of U.S. Adults, Journal of the American Medical Association, 151:669-74 (1995).

Radiation Technical Services of Baton Rouge, *Air Sample Collected in Location Approximating Breathing Zone of Most Exposed Person*, X-ref. # 930415.01-2 (April, 1993).

Preston, DL, Y Shimizu, DA Pierce, A Suyama, and K Mabuchi. 2003. Studies of Mortality of Atomic Bomb Survivors. Report 13: Solid Cancer and Noncancer Disease Mortality: 1950-1997. Radiation Research, 160: 381-407.

Reed G, Holland B, and A McArthur, *Evaluating the Real Risks of Radioactive Scale in Oil and Gas Production*, in Proceedings of the First International Conference on Health, Safety and the Environment, held in The Hague, Netherlands, Society of Petroleum Engineers, Richardson, TX (1991).

Samet JM, et al, The National Morbidity, Mortality, and Air Pollution Study. Part II: Morbidity and Mortality from Air Pollution in the United States, Health Effects Institute (HEI), Research Report 94 (II) (June 2000).

United States Department of Energy, *Pathway Analysis and Radiation Dose Estimates for Radioactive Residues at Formerly Utilized MED/AEC Sites*, Oak Ridge National Laboratory. DOE ORO-832 (1983).

United States Environmental Protection Agency (US-EPA), *Exposure Factors Handbook*, I EPA/600/P-95/002Fa:4-21 (August, 1997).

United States Environmental Protection Agency (US-EPA), Letter from Charles R Porter to Eddie S Fuentz (MS DOH), with attached report on radiological survey of the Case Property (23 January 1987).

Zemp E, Elsässer S, Schindler C, et al, *Long-Term Ambient Air Pollution and Respiratory Symptoms in Adults (SAPALDIA Study*), American Journal of Respiratory Care Medicine, 159:1257-66 (1999).